
MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide
Rev. 13 — 11 July 2022 User guide

Document information
Information Content

Keywords MCUXSDKUSBSUG, USB Stack, USB examples

Abstract This document describes the steps to compile the USB examples, download
a binary image, and run the examples, port the USB stack to a new platform,
and develop a new application based on the existing classes in the USB
stack.

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

1 Overview

This document describes the following:

• Steps to compile the USB examples, download a binary image, and run the examples.
• Steps to port the USB stack to a new platform.
• Steps to develop a new application based on the existing classes in the USB stack.

2 Build the USB examples in MCUXpresso SDK

This section describes how to compile the USB stack and examples, download a binary
image, and run the examples.

2.1 Requirements for building USB examples
The TWR-K22F120M Tower System module or FRDM-K64F Freedom platform is used
as an example in this document. The process for compiling, downloading, and running
examples is similar on all other boards. For a detailed version of the toolchain software,
see the MCUXpresso SDK Release Notes (document MCUXSDKRN).

2.1.1 Hardware

• TWR-K22F120M Tower System module and (optional) TWR-SER Tower System
module and Elevator

• MCUXpresso SDK Boards
• J-Link debugger (optional)
• USB cables

2.1.2 Software

• MCUXpresso SDK release package
• IAR Embedded Workbench for ARM

®
 Version 8.11.3

• Keil µVision5 Integrated Development Environment Version 5.23 , available for ARM
®

Cortex
®
-M4 devices

• MCUXpresso IDE v10.1.0
• Makefiles support with GCC revision 6-2017-q2-update from ARM Embedded

2.2 USB code structure
The USB code is located in the folder:

<install_dir>/middleware/usb

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
2 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 1. MCUXpresso SDK folder structure

The USB folder includes the source code for stack and examples. Note that the version
number of the USB folder may vary.

Figure 2. USB folder structure

The USB folder includes the following subfolders:

• device
This subfolder includes the device controller driver and common device driver for the
USB device.

• host
This subfolder includes the host controller driver and common host driver for the USB
host.

• include
This subfolder includes the definitions and structures for the USB stack.

• otg
This subfolder includes the OTG controller driver, common OTG driver and OTG
peripheral driver for the USB OTG.

• output
This subfolder includes the files that are specially used by the New Project wizard.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
3 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Note: For different USB stack versions, the folder structure may be a little different. See
the folder structure in the release package to get the exact folder structure.

2.3 Compiling or running the USB stack and examples

Note: The USB example may not support all compilers. The steps below describes how
to compile and run on all compilers. Check the specific MCUXpresso SDK documentation
to know about the supported compilers for the USB example.

2.3.1 Step-by-step guide for MCUXpresso IDE

1. Prepare a compressed release package, such as SDK_2.0_FRDM-K64F.zip.
2. Open MCUXpresso IDE and drag and drop the MCUXpresso SDK (zip file/folder) into

the "Installed SDKs". The MCUXpresso SDK should install.

Figure 3. Installed SDK
3. To select an example, select the “Import SDK example(s)” button. Click the “Next”

button after selecting the available board.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
4 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 4. Import project button

Figure 5. Select boards
4. To import one example, click the “Finish” button after selecting the available example.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
5 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 6. Import project
5. After importing, the window should look like the below figure.

Figure 7. The USB projects workspace

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
6 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

6. Choose the appropriate build target, “Debug” or “Release”, by left-clicking the build
configuration icon as show in the below figure.

Figure 8. Manage build configuration button
7. If the project build does not begin after selecting the desired target, left-click the build

icon to start the build.

Figure 9. Build project button
8. To check debugger configurations, click the down arrow next to the green debug

button and select “Debug Configurations”.

Figure 10. Configure debug button
9. After verifying the debugger configurations are correct, click the “Debug” button.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
7 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 11. MCUXpresso IDE debug configurations
10. The application is downloaded to the target and automatically runs to main():
11. Run the code by clicking the “Resume” button to start the application:

Figure 12. Resume button
12. See the example-specific document for more test information.

2.3.2 Step-by-step guide for IAR

This section shows how to use IAR. Open IAR as shown in this figure:

1. Open the worksace corresponding to different examples.
For example, the workspace file is located at: <install_dir>/boards/twrk22f120m/usb_
examples/usb_host_hid_mouse/bm/iar/host_hid_mouse_bm.eww.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
8 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 13. IAR workspace
2. Build the host_hid_mouse_bm example.
3. Connect the micro USB cable from a PC to the J25 of the TWR-K22F120M Tower

System module to power on the board.
4. Click the “Download and Debug” button. Wait for the download to complete.
5. Click the “Go” button to run the example.
6. See the example-specific readme.pdf for more test information.

2.3.3 Step-by-step guide for Keil µVision5

This section shows how to use Keil µVision5. Open Keil µVision5 as shown in this figure:

1. Open the workspace corresponding to different examples.
For example, the workspace file is located in <install_dir>/boards/twrk22f120m/usb_
examples/usb_host_hid_mouse/bm/mdk/host_hid_mouse_bm.uvmpw.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
9 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 14. Keil µVision5 workspace
2. Build the host_hid_mouse_bm example.
3. Click the “Start/Stop” debug session button. Wait for the download to complete.
4. Click the “Go” button to run the example.
5. See the example-specific readme.pdf for more test information.

2.3.4 Step-by-step guide for ARM GCC

2.3.4.1 Setup tool chains

2.3.4.2 Install GCC Arm embedded tool chain

Download and install the installer from www.launchpad.net/gcc-arm-embedded.

2.3.4.3 Install MinGW

1. Download the latest mingw-get-setup.exe.
2. Install the GCC Arm Embedded toolchain. The recommended path is C:/MINGW.

Note: The installation path should not contain a space.
3. Ensure that the mingw32-base and msys-base are selected under basic setup.
4. Click “Installation” and “Apply changes”.

Figure 15. Setup MinGW and MSYS
5. Add paths C:/MINGW/msys/1.0/bin;C:/MINGW/bin to the system environment. If the

GCC Arm Embedded tool chain was not installed at the recommended location, the

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
10 / 48

http://www.launchpad.net/gcc-arm-embedded

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

system paths added should reflect this change else the tool chain will not work. An
example using the recommended installation locations is shown below.

Figure 16. Add Path to systems environment

2.3.4.4 Add new system environment variable ARMGCC_DIR

Create a new system environment variable ARMGCC_DIR. The value of this variable
should be the short name of the Arm GCC Embedded tool chain installation path.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
11 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 17. Add ARMGCC_DIR system variable

2.3.4.5 Install CMake

1. Download CMake 3.0.1 from www.cmake.org/cmake/resources/software.html.
2. Install CMake 3.0.1 and ensure that the option "Add CMake to system PATH" is

selected.

Figure 18. Install CMake

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
12 / 48

http://www.cmake.org/cmake/resources/software.html

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

2.3.4.6 Build the USB demo

1. Change the directory to the project directory:<install_dir>/boards/twrk22f120m/usb_
examples/usb_host_hid_mouse/bm/armgcc.

2. Run the build_all.bat. The build output is shown in this figure:

Figure 19. USB host demo built successfully

2.3.4.7 Run a demo application

This section describes steps to run a demo application using J-Link GDB Server
application.

1. Connect the J-Link debug port to the SWD/JTAG connector of the board.
2. Open the J-Link GDB Server application and modify your connection settings as

shown in this figure.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
13 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 20. SEGGER J-Link GDB Server configuration

Note: The target device selection should be MK22FN512xxx12. The target interface
should be SWD.

3. After the connection is estabilished, the screen would resemble the figure below:

Figure 21. SEGGER J-Link GDB Server screen after successful connection

Note: The CPU selection should be CPU to: MK22FN512xxx12.
4. Open the Arm GCC command prompt and change the directory to the output

directory of the desired demo. For this example, the directory is:

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
14 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

<install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/armgcc/
debug.

5. Run the command “arm-none-eabi-gdb.exe <DEMO_NAME>.elf”. Run these
commands:
• “target remote localhost: 2331”
• “monitor reset”
• “monitor halt”
• “load”
• “monitor reset”

6. The application is downloaded and connected. Execute the “monitor go” command to
start the demo application.

7. See the example-specific document for more test information.

2.4 USB stack configuration

2.4.1 Device configuration

A device configuration file is set up for each example, such as:

<install_dir>/boards/twrk22f120m/usb_examples/usb_device_hid_mouse/bm/usb_
device_config.h

This file is used to either enable or disable the USB class driver and to configure the
interface type (high-speed or full speed). The object number is configurable either to
decrease the memory usage or to meet specific requirements.

If the device stack configuration is changed, rebuild the example projects. For each
device, follow these steps.

If the board is a Tower or Freedom platform, enable the following macros:

1. Enable #define USB_DEVICE_CONFIG_KHCI (0U) macro for full speed.
2. Enable #define USB_DEVICE_CONFIG_EHCI (0U) macro if the board supports

high-speed.

If board is part of the LPC series, enable the following macros:

1. Enable #define USB_DEVICE_CONFIG_LPCIP3511FS (0U) macro for full speed.
2. Enable #define USB_DEVICE_CONFIG_LPCIP3511HS (0U) macro if the board

supports high-speed.

2.4.2 Host configuration

A host configuration file is set up for each example, such as:

<install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/usb_host_
config.h

This file is used to either enable or disable the USB class driver. The object number is
configurable either to decrease the memory usage or to meet specific requirements.

If the Host stack configuration is changed, rebuild the example projects.

For each Host, follow these steps.

If the board is a Tower for Freedom platform, enable the following macros:

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
15 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Enable this macro for full speed.

#define USB_HOST_CONFIG_KHCI (0U)

Enable this macro if the board supports high-speed.

#define USB_HOST_CONFIG_EHCI (0U)

If board is part of the LPC series, enable the following macros:

Enable this macro for full speed.

#define USB_HOST_CONFIG_OHCI (0U)

Enable this macro if the board supports high-speed.

#define USB_HOST_CONFIG_IP3516HS (0U)

2.4.3 USB cache-related MACROs definitions

There are few MACROs in the USB stack to define USB data attributes.

• USB_STACK_USE_DEDICATED_RAM
The following values are used to configure the USB stack to use dedicated RAM or not.
1. USB_STACK_DEDICATED_RAM_TYPE_BDT_GLOBAL - The USB device global
variables (controller data and device stack data) are put into the USB-dedicated RAM.
2. USB_STACK_DEDICATED_RAM_TYPE_BDT - The USB device controller global
variables (BDT data) are put into the USB-dedicated RAM.
3. 0 - There is no USB-dedicated RAM.

• USB_DEVICE_CONFIG_BUFFER_PROPERTY_CACHEABLE
The following values are used to configure the device stack cache to be enabled or not.
0: disabled
1: enable
This macro is not supported in the Cortex-M7 platforms.

• USB_HOST_CONFIG_BUFFER_PROPERTY_CACHEABLE
The following values are used to configure host stack cache to be enabled or not.
0: disable
1: enable
This macro is not supported in the Cortex-M7 platforms.

Based on the above MACROs, the following cache-related MACROs are defined in the
USB stack.

USB_DEVICE_
CONFIG_BUFFER_
PROPERTY_
CACHEABLE ||
USB_HOST_
CONFIG_BUFFER_
PROPERTY_
CACHEABLE is true

USB_DEVICE_CONFIG_BUFFER_PROPERTY
_CACHEABLE ||
USB_HOST_CONFIG_BUFFER_PROPERTY_
CACHEABLE is false

USB_STACK_USE_
DEDICATED_RAM’s
Value

DATA_SECTION_IS_
CACHEABLE is true

DATA_SECTION_IS_
CACHEABLE is false

Table 1. Cache and global variable attribute relation

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
16 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

USB_STACK_
DEDICATED_RAM_
TYPE_BDT_GLOBAL

USB_
GLOBAL

dedicated
ram,
stack use
only

USB_BDT dedicated
ram,
stack use
only

USB_
CONTROLL
ER_DATA

Non
Cachable,
stack use
only

USB_
DMA_
NONINIT_
DATA_
ALIGN(n)

cachable
ram and
alignment

USB_
DMA_
INIT_
DATA_
ALIGN(n)

cachable
ram and
alignment

USB_
GLOBAL

dedicated
ram,
stack use
only

USB_BDT dedicated
ram,
stack use
only

USB_
CONTROLL
ER_DATA

Non
Cachable,
stack use
only

USB_
DMA_
NONINIT_
DATA_
ALIGN(n)

noncachable
ram and
alignment

USB_
DMA_
INIT_
DATA_
ALIGN(n)

noncachable
ram and
alignment

USB_
GLOBAL

dedicated
ram,
stack use
only

USB_BDT dedicated
ram,
stack use
only

USB_
CONTROLL
ER_DATA

dedicated
ram,
stack use
only

USB_
DMA_
NONINIT_
DATA_
ALIGN(n)

alignment

USB_
DMA_
INIT_
DATA_
ALIGN(n)

alignment

USB_STACK_
DEDICATED_RAM_
TYPE_BDT

USB_
GLOBAL

cachable
ram and
alignment,
stack use
only

USB_BDT dedicated
ram,
stack use
only

USB_
CONTROLL
ER_DATA

Non
Cachable,
stack use
only

USB_
DMA_
NONINIT_
DATA_
ALIGN(n)

cachable
ram and
alignment

USB_
DMA_
INIT_
DATA_
ALIGN(n)

cachable
ram and
alignment

USB_
GLOBAL

Non
Cachable,
stack use
only

USB_BDT dedicated
ram,
stack use
only

USB_
CONTROLL
ER_DATA

Non
Cachable,
stack use
only

USB_
DMA_
NONINIT_
DATA_
ALIGN(n)

Non
Cachable
and
alignment

USB_
DMA_
INIT_
DATA_
ALIGN(n)

Non
Cachable
and
alignment

USB_
GLOBAL

NULL,
stack use
only

USB_BDT dedicated
ram,
stack use
only

USB_
CONTROLL
ER_DATA

NULL,
stack use
only

USB_
DMA_
NONINIT_
DATA_
ALIGN(n)

alignment

USB_
DMA_
INIT_
DATA_
ALIGN(n)

alignment

Table 1. Cache and global variable attribute relation...continued

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
17 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

0
USB_
GLOBAL

cachable
ram and
alignment,
stack use
only

USB_BDT Non
Cachable,
stack use
only

USB_
CONTROLL
ER_DATA

Non
Cachable,
stack use
only

USB_
DMA_
NONINIT_
DATA_
ALIGN(n)

cachable
ram and
alignment

USB_
DMA_
INIT_
DATA_
ALIGN(n)

cachable
ram and
alignment

USB_
GLOBAL

Non
Cachable,
stack use
only

USB_BDT Non
Cachable,
stack use
only

USB_
CONTROLL
ER_DATA

Non
Cachable,
stack use
only

USB_
DMA_
NONINIT_
DATA_
ALIGN(n)

Non
Cachable
and
alignment

USB_
DMA_
INIT_
DATA_
ALIGN(n)

Non
Cachable
and
alignment

USB_
GLOBAL

NULL,
stack use
only

USB_BDT NULL,
stack use
only

USB_
CONTROLL
ER_DATA

NULL,
stack use
only

USB_
DMA_
NONINIT_
DATA_
ALIGN(n)

alignment

USB_
DMA_
INIT_
DATA_
ALIGN(n)

alignment

Table 1. Cache and global variable attribute relation...continued

Note: “NULL” means that the MACRO is empty and has no influence.

There are four assistant MACROs:

USB_DATA_ALIGN_SIZE Used in USB stack and application, defines the
default align size for USB data.

USB_DATA_ALIGN_SIZE_MULTIPLE(n) Used in USB stack and application, calculates
the value that is multiple of the data align size.

USB_DMA_DATA_NONCACHEABLE Used in USB stack and application, puts data
in the noncacheable region if the cache is
enabled.

USB_GLOBAL_DEDICATED_RAM Used in USB stack and application, puts data
in the dedicated RAM if dedicated RAM is
enabled.

3 Porting to a new platform

To port the USB stack to a new platform in the MCUXpresso SDK, the SoC-related files,
board-related files, and a linker file for a specified compiler are required.

Assume that the new platform’s name is “xxxk22f120m” based on the MK22F51212 SoC.

3.1 System-on-Chip (SoC) files
SoC source/header files are in the following directory, which are available by default from
MCUXpresso SDK.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
18 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 22. SoC header file directory

Note:

Linker files for each toolchain are in the linker directory.

Different toolchains’ SoC startup assembler files are in the Arm, GCC, and IAR
directories.

3.2 Board files
The files for the board configuration and the clock configuration on a specific platform are
needed to enable the USB stack.

The clock configuration files are shown in the following image.

Figure 23. Clock configuration files

1. Create a folder “xxxk22f120m” under the examples directory.
2. Copy the clock_config.c and clock_config.h file from the similar platform. For

example, the TWR-K22F120M Tower System module.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
19 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

3. Ensure that BOARD_BootClockxxx is implemented in the clock_config.c file. For
example, BOARD_BootClockRUN and BOARD_BootClockHSRUN. The user can
change the function name. However, the BOARD_InitHardware must call the
function. BOARD_InitHardware is introduced later.
The board clock initialization is based on the board crystal oscillator. Ensure that the
following two MACROs are defined in the clock_config.h file:
#define BOARD_XTAL0_CLK_HZ 8000000U
#define BOARD_XTAL32K_CLK_HZ 32768U

The user can updatethe MACROs according to the board design. For example, if
the XTAL0 crystal oscillator is 16000000U and the XTAL32K is 32768U, change the
following MACROs as follows:
#define BOARD_XTAL0_CLK_HZ 16000000U
#define BOARD_XTAL32K_CLK_HZ 32768U

The board configuration files are shown in the following image:

Figure 24. Board configuration files
4. Copy board.c and board.h from the similar platform. For example, the TWR-

K22F120M platform. Ensure that the BOARD_InitDebugConsole is implemented
in board.c file and that the BOARD_InitHardware calls the function. The
BOARD_InitHardware function is introduced later.
The Debug console-related MACROS are needed in the board.h file, as follows:
#define BOARD_DEBUG_UART_TYPE DEBUG_CONSOLE_DEVICE_TYPE_UART
#define BOARD_DEBUG_UART_BASEADDR (uint32_t) UART2
#define BOARD_DEBUG_UART_CLKSRC BUS_CLK
#define BOARD_DEBUG_UART_BAUDRATE 115200

Update the MACROs according to the board design. For example, the default UART
instance on the board is LPUART1, the type of default UART instance on one specific
platform is LPUART, and the LPUART clock source is the external clock. In this case,
change the above MACROs as follows:
#define BOARD_DEBUG_UART_TYPE DEBUG_CONSOLE_DEVICE_TYPE_LPUART
#define BOARD_DEBUG_UART_BASEADDR (uint32_t) LPUART1
#define BOARD_DEBUG_UART_CLKSRC kCLOCK_Osc0ErClk
#define BOARD_DEBUG_UART_BAUDRATE 115200

Note that there are three kinds of UART instances provided in MCUXpresso SDK
devices, UART, LPUART, and LPSCI. The interfaces of the UART instance are
different. To provide a uniform UART interface to a USB Host example in which
the UART function is used, a UART instance wrapper is provided. The wrapper is
implemented in the usb_uart_drv.c, usb_lpuart_drv.c, or usb_lpsci_drv.c file and

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
20 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

has a common header file usb_uart_drv.h. For a different UART instance, use the
corresponding UART instance wrapper file in the project.

3.3 Porting examples

3.3.1 Copy a new platform example

The platform USB examples directory is shown in the following figure.

Figure 25. USB examples directory

Copy the existed example’s whole directory from the similar platform, which ensures that
all example source files and project files are copied.

For example, copy the twrk22f120m/usb/usb_device_audio_generator_lite to
the twrkxx/usb location, which ensures that sources files and project files for
usb_device_audio_generator_lite example are copied.

3.3.2 Porting the example

For different examples, different pins are used. As a result, the pin_mux.c/h files are
needed to assign different pins to a specific functionality. Check the board schematic for
correct pin settings.

Example-related port pin configurations are required in the following files:

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
21 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 26. Example-related port pin configuration files

Ensure the BOARD_InitPins function is implemented in the pin_mux.c file.
In this function, the port clock and pin mux are initialized. Ensure that the
BOARD_InitHardware calls the function. The BOARD_InitHardware function will be
introduced later.

For example, on the TWR-K65F180M board, the VBUS of the USB Host is controlled by
the PORTD_8 as a GPIO. Therefore, the PORTD clock needs to be enabled first and
then the PORTD_8 configured to GPIO functionality. The debug console uses UART2.
The TX/RX pins are PORTE_16 and PORTE_17. As a result, the clock of PORTE needs
to be enabled first and then the PORTE_16 and PORTE_17 configured to alternative 3.

This is example code for TWR-K65F180M:

void BOARD_InitPins(void)
{
/* Initialize UART2 pins below */
CLOCK_EnableClock(kCLOCK_PortE);
 PORT_SetPinMux(PORTE, 16u, kPORT_MuxAlt3);
 PORT_SetPinMux(PORTE, 17u, kPORT_MuxAlt3);
 /* Initialize usb vbus pin */
 CLOCK_EnableClock(kCLOCK_PortD);
 PORT_SetPinMux(PORTD, 8u, kPORT_MuxAsGpio);
}

Check the specific board design to find out which port is used to control the USB VBUS
and which port is used for the debug console. For example, in the customer’s board
design, the PORTC_15 is used to control the USB VBUS, and PORTD_1 and PORTD_2
is used for debug console. The following shows the example code:

void BOARD_InitPins(void)
{
/* Initialize UART2 pins below */
CLOCK_EnableClock(kCLOCK_PortD);
 PORT_SetPinMux(PORTD, 1u, kPORT_MuxAlt3);
 PORT_SetPinMux(PORTD, 2u, kPORT_MuxAlt3);
 /* Initialize usb vbus pin */
 CLOCK_EnableClock(kCLOCK_PortC);
 PORT_SetPinMux(PORTC, 15u, kPORT_MuxAsGpio);

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
22 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

}

The VBUS must output high. The following is example code for TWR-K65F180M:

void BOARD_InitHardware(void)
{
gpio_pin_config_t pinConfig;
BOARD_InitPins();
BOARD_BootClockRUN();
BOARD_InitDebugConsole();
/* vbus gpio output high */
pinConfig.pinDirection = kGPIO_DigitalOutput;
pinConfig.outputLogic = 1U;
GPIO_PinInit(PTD, 8U, &pinConfig);
}

The user can change the function as follows:

void BOARD_InitHardware(void)
{
gpio_pin_config_t pinConfig;
BOARD_InitPins();
BOARD_BootClockxxx();
BOARD_InitDebugConsole();
/* vbus gpio output high */
pinConfig.pinDirection = kGPIO_DigitalOutput;
pinConfig.outputLogic = 1U;
GPIO_PinInit(PTC, 15U, &pinConfig);
}

3.3.3 Modify the example project

USB example project files are kept in the example directory, as shown in the following
figure.

Figure 27. Modify the example project

1. Open the project and change the SoC.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
23 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Note:
a. Check the project SoC and update to the porting platform SoC.
b. Update the SoC full name, platform name, and board type name macros

if the SoC is updated. For example, for TWR-K22F120M, update the
CPU_MK22FN512VDC12, TWR_K22F120M, and TOWER macros.

2. Check the files in startup group, for example (IAR):

Figure 28. Check files in startup group

Ensure that the system_MK22F51212.c, system_MK22F51212.h, and
strtup_MK22F51212.s are the porting SoC files. Also change the include path.

3. Check the files in the platform/clock group, for example (IAR):

Figure 29. Check files in platform/clock group

Ensure that the fsl_clock_MK22F51212.c, and fsl_clock_MK22F51212.h are porting
SoC files. Additionally, change the include path.

4. Change the files in board group, for example (IAR):

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
24 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 30. Change files in board group

Ensure that board.c, board.h, clock_config.c, and clock_config.h are porting platform
files. Additionally, change the include path.

5. Check the files in the sources group, for example (IAR):

Figure 31. Check files in source group

The example application source files are copied when copying the example directory.
Change the include path.

6. Change the linker file to the new platform. Ensure that the linker file is the porting
SoC file.

7. Debug console may use UART, LPUART, or LPSCI according to the platform. As a
result, the example project needs to contain UART, LPUART, or LPSCI driver files
according to the platform.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
25 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 32. UART, LPUART, and LPSCI files

For example, for TWR-K22F120M all UART files are all in the project. In another
example, TWR-K80F150M, all LPUART files are in the project.

3.3.4 USB host CDC example

The MCUXpresso SDK debug console can be based on The MCUXpresso SDK UART,
LPUART, or LPSCI driver. Because different platforms may use different drivers,
the CDC has a wrapper code. The files, which call the corresponding driver API
according to the debug console use UART, LPUART, or LPSCI. The utility uses the
BOARD_DEBUG_UART_TYPE toidentify the UART type. To use a different UART
instance, use the corresponding UART instance wrapper file.

The MCUXpresso SDK debug console only enables send. The Host CDC example needs
the receive function. Therefore, configuration MACROs need to be defined in the board.h
file. The debug console and the Host CDC share the same configuration. This is an
example:

#define BOARD_DEBUG_UART_TYPE kSerialPort_Uart
#define BOARD_DEBUG_UART_BASEADDR (uint32_t)UART1
#define BOARD_DEBUG_UART_CLKSRC kCLOCK_CoreSysClk
#define BOARD_DEBUG_UART_BAUDRATE 115200

Update MACROs according to board design. For example, the default UART instance
on the board is LPUART1, the type of default UART instance on one specific platform is
LPUART, and the LPUART clock source is the external clock. In this case, change the
above MACROs as follows:

#define BOARD_DEBUG_UART_TYPE kSerialPort_Uart
#define BOARD_DEBUG_UART_BASEADDR (uint32_t) LPUART1
#define BOARD_DEBUG_UART_CLKSRC kCLOCK_Osc0ErClk
#define BOARD_DEBUG_UART_BAUDRATE 115200

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
26 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

3.3.5 USB device MSC SD card example

USB device MSC SD card example needs SDHC driver support and SD card support.
The example works only if the platform supports both SD card and the SDHC. To enable
this example using the same code, the following MACROs are defined in the board.h file:

#define BOARD_SDHC_BASEADDR SDHC
#define BOARD_SDHC_CLKSRC kCLOCK_CoreSysClk
#define BOARD_SDHC_CD_GPIO_BASE GPIOB
#define BOARD_SDHC_CD_GPIO_PIN 20U
#define BOARD_SDHC_CD_PORT_BASE PORTB
#define BOARD_SDHC_CD_PORT_IRQ PORTB_IRQn
#define BOARD_SDHC_CD_PORT_IRQ_HANDLER PORTB_IRQHandler

Update the MACROs according to the board design. For example, the SD card detection
GPIO on the board is PORTD_1. In this case, change the above MACROs as follows:

#define BOARD_SDHC_BASEADDR SDHC
#define BOARD_SDHC_CLKSRC kCLOCK_CoreSysClk
#define BOARD_SDHC_CD_GPIO_BASE GPIOD
#define BOARD_SDHC_CD_GPIO_PIN 1U
#define BOARD_SDHC_CD_PORT_BASE PORTD
#define BOARD_SDHC_CD_PORT_IRQ PORTD_IRQn
#define BOARD_SDHC_CD_PORT_IRQ_HANDLER PORTD_IRQHandler

3.3.6 USB device audio speaker example

USB device audio speaker example needs the I2C, SAI, and DMA driver support.

The instance of SAI (I2S) and I2C are defined in the app.h file in the example directory as
follows:

#define DEMO_SAI I2S0
#define DEMO_I2C I2C0
#define DEMO_SAI_CLKSRC kCLOCK_CoreSysClk

Update the MACROs according to board design. For example, the I2S instance on the
board is I2S2. In this case, change the above MACROs as follows:

#define DEMO_SAI I2S2
#define DEMO_I2C I2C2
#define DEMO_SAI_CLKSRC kCLOCK_CoreSysClk

3.3.7 USB device CCID Smart card example

The example is based on the EMVL1 stack, which works on the EMV protocol. As a
result, the example can only be ported to the platform that supports both the EMVL1
stack and the EMV protocol.

4 Developing a new USB application

The following sections provide information regarding how to develop a new USB
application.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
27 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

4.1 Developing a new USB device application
This chapter introduces how to develop a new USB device application. The user needs to
use the application interface and the following steps to develop a new application.

4.1.1 Application interfaces

The interface definition between the application and the classes includes the calls shown
in the following table:

API Call Description

Class Initialization This API is used to initialize the class.

Receive Data This API is used by the application to receive
data from the host system.

Send Data This API is used by the application to send data
to the host system.

USB descriptor-related callback Handles the callback to get the descriptor.

USB Device call back function Handles the callback by the class driver to
inform the application about various USB bus
events.

USB Class-specific call back function Handles the specific callback of the class.

Table 2. Application and classes interface definition

4.1.2 How to develop a new device application

Perform these steps to develop a new device application:

1. Create a new application directory under <install_dir>/boards/<board>/
usb_examples/usb_device_<class>_<application> to locate the
application source files and header files. For example, <install_dir>/boards/
<board>/usb_examples/usb_device_hid_test.

2. Copy the following files from the similar existing applications to the application
directory that is created in Step 1.
usb_device_descriptor.c
usb_device_descriptor.h

The usb_device_descriptor.c and usb_device_descriptor.h files contain
the USB descriptors that are dependent on the application and the class driver.

3. Copy the bm directory from the similar existing application directory to the new
application directory. Remove the unused project directory from the bm directory.
Modify the project directory name to the new application project name. For
example, to create toolchain-IAR, board-frdmk64 class-hid related
application, create the new application hid_test based on a similar existing
application hid_mouse.
Change <install_dir>/boards/<board>/usb_examples/usb_device_
hid_mouse to <install_dir>/boards/<board>/usb_examples/usb_
device_hid_test

4. Modify the project file name to the new application project file name, for example,
from dev_hid_mouse_bm.ewp to dev_hid_test_bm.ewp. Globally replace
the existing name to the new project name by editing the project files. The
dev_hid_test_bm.ewp file includes the new application project setting.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
28 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

5. Create a new source file to implement the main application functions and callback
functions. The name of this file is similar to the new application name, such as
mouse.c and keyboard.c.

The following sections describe the steps to change application files created in the steps
above to match the new application.

4.1.2.1 Changing the usb_device_descriptor.c file

This file contains the class driver interface. It also contains USB standard descriptors
such as device descriptor, configuration descriptor, string descriptor, and the other class-
specific descriptors that are provided to class driver when required.

The lists below show user-modifiable variable types for an already implemented
class driver. The user should also modify the corresponding MACROs defined in
the usb_device_descriptor.h file. See the MCUXpresso SDK API Reference Manual
(document MCUXSDKAPIRM) for details.

• usb_device_endpoint_struct_t;
• usb_device_endpoint_list_t;
• usb_device_interface_struct_t;
• usb_device_interfaces_struct_t;
• usb_device_interface_list_t;
• usb_device_class_struct_t;
• usb_device_class_config_struct_t;
• usb_device_class_config_list_struct_t;

This diagram shows the relationship between these items:

Figure 33. Relationship diagram

This is the sample code implementation of the endpoint descriptor for the HID class:

/* HID mouse endpoint information */
usb_device_endpoint_struct_t
 g_UsbDeviceHidMouseEndpoints[USB_HID_MOUSE_ENDPOINT_COUNT] =
{
 /* HID mouse interrupt IN pipe */
 {
 USB_HID_MOUSE_ENDPOINT_IN | (USB_IN <<
 USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_SHIFT),
 USB_ENDPOINT_INTERRUPT,

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
29 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

 FS_HID_MOUSE_INTERRUPT_IN_PACKET_SIZE,
 },
};

The endpoint address, transfer type, and max packet size in this variable are defined
in the usb_device_descriptor.h file. The user may change these value as required. For
example, to implement a CDC class application:

/* Define endpoint for a communication class */
usb_device_endpoint_struct_t
 g_UsbDeviceCdcVcomCicEndpoints[USB_CDC_VCOM_ENDPOINT_CIC_COUNT]
 = {
 {
 USB_CDC_VCOM_INTERRUPT_IN_ENDPOINT | (USB_IN << 7U),
 USB_ENDPOINT_INTERRUPT,
 FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE,
 },
};
/* Define endpoint for data class */
usb_device_endpoint_struct_t
 g_UsbDeviceCdcVcomDicEndpoints[USB_CDC_VCOM_ENDPOINT_DIC_COUNT]
 = {
 {
 USB_CDC_VCOM_BULK_IN_ENDPOINT | (USB_IN << 7U),
 USB_ENDPOINT_BULK, FS_CDC_VCOM_BULK_IN_PACKET_SIZE,
 },
 {
 USB_CDC_VCOM_BULK_OUT_ENDPOINT | (USB_OUT << 7U),
 USB_ENDPOINT_BULK, FS_CDC_VCOM_BULK_OUT_PACKET_SIZE,
 }
};

The endpoint count and alternate setting of the interface may differ in various
applications. The user may change these values as required. For example, the interface
structure of a CDC class application is as follows:

/* Define interface for communication class */
usb_device_interface_struct_t
 g_UsbDeviceCdcVcomCommunicationInterface[] = {{
 1U,
 {
 USB_CDC_VCOM_ENDPOINT_CIC_COUNT,
 g_UsbDeviceCdcVcomCicEndpoints,
 },
}};
/* Define interface for data class */
usb_device_interface_struct_t g_UsbDeviceCdcVcomDataInterface[]
 =
{
 {
 0,
 {
 USB_CDC_VCOM_ENDPOINT_DIC_COUNT,
 g_UsbDeviceCdcVcomDicEndpoints,
 },
 NULL
 }
};

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
30 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

The class code, subclass code, and protocol code may differ in various classes. For
example, the usb_device_interfaces_struct of a CDC class is as follows:

/* Define interfaces for the virtual com */
usb_device_interfaces_struct_t
 g_UsbDeviceCdcVcomInterfaces[USB_CDC_VCOM_INTERFACE_COUNT] = {
 {USB_CDC_VCOM_CIC_CLASS, USB_CDC_VCOM_CIC_SUBCLASS,
 USB_CDC_VCOM_CIC_PROTOCOL, USB_CDC_VCOM_COMM_INTERFACE_INDEX,
 g_UsbDeviceCdcVcomCommunicationInterface,
 sizeof(g_UsbDeviceCdcVcomCommunicationInterface) /
 sizeof(usb_device_interfaces_struct_t)},
 {USB_CDC_VCOM_DIC_CLASS, USB_CDC_VCOM_DIC_SUBCLASS,
 USB_CDC_VCOM_DIC_PROTOCOL, USB_CDC_VCOM_DATA_INTERFACE_INDEX,
 g_UsbDeviceCdcVcomDataInterface,
 sizeof(g_UsbDeviceCdcVcomDataInterface) /
 sizeof(usb_device_interfaces_struct_t)},
};

The interface count may differ in various applications. For example, the
usb_device_interface_list of a CDC class application is as follows:

/* Define configurations for virtual com */
usb_device_interface_list_t
 g_UsbDeviceCdcVcomInterfaceList[USB_DEVICE_CONFIGURATION_COUNT]
 = {
 {
 USB_CDC_VCOM_INTERFACE_COUNT,
 g_UsbDeviceCdcVcomInterfaces,
 },
};

The interface list, class type and configuration count may differ in various applications.
For example, the usb_device_class_struct of a CDC class application is as follows:

/* Define class information for virtual com */
usb_device_class_struct_t g_UsbDeviceCdcVcomConfig = {
 g_UsbDeviceCdcVcomInterfaceList, kUSB_DeviceClassTypeCdc,
 USB_DEVICE_CONFIGURATION_COUNT,
};

• g_UsbDeviceDescriptor
This variable contains the USB Device Descriptor.
Sample code implementation of the device descriptor for the HID class is shown as
follows:

uint8_t g_UsbDeviceDescriptor[USB_DESCRIPTOR_LENGTH_DEVICE] =
{
 USB_DESCRIPTOR_LENGTH_DEVICE, /* Size of this
 descriptor in bytes */
 USB_DESCRIPTOR_TYPE_DEVICE, /* DEVICE Descriptor Type
 */
 USB_SHORT_GET_LOW(USB_DEVICE_SPECIFIC_BCD_VERSION),
 USB_SHORT_GET_HIGH(USB_DEVICE_SPECIFIC_BCD_VERSION),/* USB
 Specification Release Number in

 Binary-Coded Decimal (i.e., 2.10 is 210H). */
 USB_DEVICE_CLASS, /* Class code (assigned
 by the USB-IF). */

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
31 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

 USB_DEVICE_SUBCLASS, /* Subclass code
 (assigned by the USB-IF). */
 USB_DEVICE_PROTOCOL, /* Protocol code
 (assigned by the USB-IF). */
 USB_CONTROL_MAX_PACKET_SIZE, /* Maximum packet size
 for endpoint zero
 (only 8, 16, 32, or 64
 are valid) */
 0xA2U, 0x15U, /* Vendor ID (assigned by
 the USB-IF) */
 0x7CU, 0x00U, /* Product ID (assigned
 by the manufacturer) */
 USB_SHORT_GET_LOW(USB_DEVICE_DEMO_BCD_VERSION),
 USB_SHORT_GET_HIGH(USB_DEVICE_DEMO_BCD_VERSION),/* Device
 release number in binary-coded decimal */
 0x01U, /* Index of string
 descriptor describing manufacturer */
 0x02U, /* Index of string
 descriptor describing product */
 0x00U, /* Index of string
 descriptor describing the
 device serial number
 */
 USB_DEVICE_CONFIGURATION_COUNT, /* Number of possible
 configurations */
};

The macros in the variable above are defined in the usb_device_descriptor.h
file, such as the USB_DEVICE_CLASS, USB_DEVICE_SUBCLASS, and
USB_DEVICE_PROTOCOL. Those values may need to be modified as required. The
vendor ID and product ID can also be modified.

• g_UsbDeviceConfigurationDescriptor
This variable contains the USB Configuration Descriptor.
Sample code implementation of the configuration descriptor for the HID class is
providing in the following:

uint8_t
 g_UsbDeviceConfigurationDescriptor[USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL]
 =
{
 USB_DESCRIPTOR_LENGTH_CONFIGURE, /* Size of this
 descriptor in bytes */
 USB_DESCRIPTOR_TYPE_CONFIGURE, /* CONFIGURATION
 Descriptor Type */
 USB_SHORT_GET_LOW(USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL),

 USB_SHORT_GET_HIGH(USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL),/
* Total length of data returned for this configuration. */
 USB_HID_MOUSE_INTERFACE_COUNT, /* Number of interfaces
 supported by this configuration */
 USB_HID_MOUSE_CONFIGURE_INDEX, /* Value to use as an
 argument to the
 SetConfiguration()
 request to select this configuration */
 0x00U, /* Index of string
 descriptor describing this configuration */
 (USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_D7_MASK) |
 (USB_DEVICE_CONFIG_SELF_POWER <<
 USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_SELF_POWERED_SHIFT) |

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
32 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

 (USB_DEVICE_CONFIG_REMOTE_WAKEUP <<
 USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_REMOTE_WAKEUP_SHIFT),
 /* Configuration
 characteristics
 D7: Reserved (set to
 one)
 D6: Self-powered
 D5: Remote Wakeup
 D4...0: Reserved
 (reset to zero)
 */
 USB_DEVICE_MAX_POWER, /* Maximum power
 consumption of the USB
 * device from the bus in
 this specific
 * configuration when the
 device is fully
 * operational. Expressed
 in 2 mA units
 * (i.e., 50 = 100 mA).
 */

The macro USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL, which is defined in
the usb_device_descriptor.h, needs to be modified to equal the size of this variable. The
interface count and configuration index may differ in various applications. For example,
this part of a CDC class application is as shown below:

/* Size of this descriptor in bytes */
USB_DESCRIPTOR_LENGTH_CONFIGURE,
/* CONFIGURATION Descriptor Type */
USB_DESCRIPTOR_TYPE_CONFIGURE,
/* Total length of data returned for this configuration. */
USB_SHORT_GET_LOW(USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL),
USB_SHORT_GET_HIGH(USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL),
/* Number of interfaces supported by this configuration */
USB_CDC_VCOM_INTERFACE_COUNT,
/* Value to use as an argument to the SetConfiguration()
 request to select this configuration */
USB_CDC_VCOM_CONFIGURE_INDEX,
/* Index of string descriptor describing this configuration */
0,
/* Configuration characteristics D7: Reserved (set to one) D6:
 Self-powered D5: Remote Wakeup D4...0: Reserved
 (reset to zero) */
(USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_D7_MASK) |
 (USB_DEVICE_CONFIG_SELF_POWER <<
 USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_SELF_POWERED_SHIFT) |
 (USB_DEVICE_CONFIG_REMOTE_WAKEUP <<
 USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_REMOTE_WAKEUP_SHIFT),
/* Maximum power consumption of the USB * device from the bus
 in this specific * configuration when the device is
 fully * operational. Expressed in 2 mA units * (i.e., 50 =
 100 mA). */
USB_DEVICE_MAX_POWER,

The interface descriptor may differ from various applications. For example, the interface
descriptor of a CDC class application would be as shown below.

/* Communication Interface Descriptor */

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
33 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

USB_DESCRIPTOR_LENGTH_INTERFACE, USB_DESCRIPTOR_TYPE_INTERFACE,
 USB_CDC_VCOM_COMM_INTERFACE_INDEX, 0x00,
USB_CDC_VCOM_ENDPOINT_CIC_COUNT, USB_CDC_VCOM_CIC_CLASS,
 USB_CDC_VCOM_CIC_SUBCLASS, USB_CDC_VCOM_CIC_PROTOCOL,
0x00, /* Interface Description String Index*/

The class specific descriptor may differ from various applications. For example, the class
specific descriptor of a CDC class application would be as shown below.

/* CDC Class-Specific descriptor */
USB_DESCRIPTOR_LENGTH_CDC_HEADER_FUNC, /* Size of this
 descriptor in bytes */
USB_DESCRIPTOR_TYPE_CDC_CS_INTERFACE, /* CS_INTERFACE
 Descriptor Type */
HEADER_FUNC_DESC, 0x10,
0x01, /* USB Class Definitions for Communications the
 Communication specification version 1.10 */
USB_DESCRIPTOR_LENGTH_CDC_CALL_MANAG, /* Size of this
 descriptor in bytes */
USB_DESCRIPTOR_TYPE_CDC_CS_INTERFACE, /* CS_INTERFACE
 Descriptor Type */
CALL_MANAGEMENT_FUNC_DESC,
0x01, /*Bit 0: Whether device handle call management itself 1,
 Bit 1: Whether device can send/receive call
 management information over a Data Class Interface 0
 */
0x01, /* Indicates multiplexed commands are handled via data
 interface */
 USB_DESCRIPTOR_LENGTH_CDC_ABSTRACT, /* Size of this
 descriptor in bytes */
USB_DESCRIPTOR_TYPE_CDC_CS_INTERFACE, /* CS_INTERFACE
 Descriptor Type */
USB_CDC_ABSTRACT_CONTROL_FUNC_DESC,
0x06, /* Bit 0: Whether device supports the request combination
 of Set_Comm_Feature, Clear_Comm_Feature, and
 Get_Comm_Feature 0, Bit 1: Whether device supports the
 request combination of Set_Line_Coding,
 Set_Control_Line_State, Get_Line_Coding, and the
 notification Serial_State 1, Bit ... */
USB_DESCRIPTOR_LENGTH_CDC_UNION_FUNC, /* Size of this
 descriptor in bytes */
USB_DESCRIPTOR_TYPE_CDC_CS_INTERFACE, /* CS_INTERFACE
 Descriptor Type */
USB_CDC_UNION_FUNC_DESC, 0x00, /* The interface number
 of the Communications or Data Class interface */
0x01, /* Interface number of
 subordinate interface in the Union */

The endpoint descriptor may differ from various applications. For example, the endpoint
descriptor of a CDC class application is as follows:

/*Notification Endpoint descriptor */
 USB_DESCRIPTOR_LENGTH_ENDPOINT,
 USB_DESCRIPTOR_TYPE_ENDPOINT,
 USB_CDC_VCOM_INTERRUPT_IN_ENDPOINT | (USB_IN << 7U),
 USB_ENDPOINT_INTERRUPT,
 USB_SHORT_GET_LOW(FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE),
 USB_SHORT_GET_HIGH(FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE),
 FS_CDC_VCOM_INTERRUPT_IN_INTERVAL,

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
34 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

}

• String Descriptors
Users can modify string descriptors to customize their product. String descriptors
are written in the UNICODE format. An appropriate language identification number is
specified in the USB_STR_0. Multiple language support can also be added.

• USB_DeviceGetDeviceDescriptor
This interface function is invoked by the application. This call is made when the
application receives the kUSB_DeviceEventGetDeviceDescriptor event from the Host.
Mandatory descriptors that an application is required to implement are as follows:
– Device Descriptor
– Configuration Descriptor
– Class-Specific Descriptors (For example, for HID class implementation, Report

Descriptor, and HID Descriptor)
Apart from the mandatory descriptors, an application should also implement various
string descriptors as specified by the Device Descriptor and other configuration
descriptors.
Sample code for HID class application is as follows:

/* Get device descriptor request */
usb_status_t USB_DeviceGetDeviceDescriptor(usb_device_handle
 handle,

 usb_device_get_device_descriptor_struct_t *deviceDescriptor)
{
 deviceDescriptor->buffer = g_UsbDeviceDescriptor;
 deviceDescriptor->length = USB_DESCRIPTOR_LENGTH_DEVICE;
 return kStatus_USB_Success;
}

The user may assign the appropriate variable of the device descriptor. For example, if the
device descriptor variable name is g_UsbDeviceDescriptorUser, the sample code is as
follows:

/* Get device descriptor request */
usb_status_t USB_DeviceGetDeviceDescriptor(usb_device_handle
 handle,

 usb_device_get_device_descriptor_struct_t *deviceDescriptor)
{
 deviceDescriptor->buffer = g_UsbDeviceDescriptorUser;
 deviceDescriptor->length = USB_DESCRIPTOR_LENGTH_DEVICE;
 return kStatus_USB_Success;
}

• USB_DeviceGetConfigurationDescriptor
This interface function is invoked by the application. This call is made when the
application receives the kUSB_DeviceEventGetConfigurationDescriptor event from the
Host.

/* Get device configuration descriptor request */
usb_status_t USB_DeviceGetConfigurationDescriptor(
 usb_device_handle handle,
 usb_device_get_configuration_descriptor_struct_t
 *configurationDescriptor)
{

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
35 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

 if (USB_HID_MOUSE_CONFIGURE_INDEX >
 configurationDescriptor->configuration)
 {
 configurationDescriptor->buffer =
 g_UsbDeviceConfigurationDescriptor;
 configurationDescriptor->length =
 USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL;
 return kStatus_USB_Success;
 }
 return kStatus_USB_InvalidRequest;
}

The macro HID_MOUSE_CONFIGURE_INDEX may differ from various applications. For
example, the implementation of a CDC class application would be as follows:

usb_status_t USB_DeviceGetConfigurationDescriptor(
 usb_device_handle handle,
 usb_device_get_configuration_descriptor_struct_t
 *configurationDescriptor)
{
 if (USB_CDC_VCOM_CONFIGURE_INDEX > configurationDescriptor-
>configuration)
 {
 configurationDescriptor->buffer =
 g_UsbDeviceConfigurationDescriptor;
 configurationDescriptor->length =
 USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL;
 return kStatus_USB_Success;
 }
 return kStatus_USB_InvalidRequest;
}

• USB_DeviceGetStringDescriptor
This interface function is invoked by the application. This call is made when the
application receives the kUSB_DeviceEventGetStringDescriptor event from the Host.
See the usb_device_hid_mouse example for sample code.

• USB_DeviceGetHidReportDescriptor
This interface function is invoked by the application. This call is made when the
application receives the kUSB_DeviceEventGetHidReportDescriptor event from the
Host.
See the usb_device_hid_mouse example for sample code.

• USB_DeviceSetSpeed
Because HS and FS descriptors are different, the device descriptors and configurations
need to be updated to match the current speed. By default, the device descriptors
and configurations are configured using FS parameters for EHCI, KHCI, and other
controllers, such as LPC IP3511. When the EHCI is enabled, the application needs
to call this function to update the device by using the current speed. The updated
information includes the endpoint max packet size, endpoint interval, and so on.

4.1.2.2 Changing the usb_device_descriptor.h file

This file is mandatory for the application to implement. The usb_device_descriptor.c
file includes this file for function prototype definitions. When the user modifies the
usb_device_descriptor.c, MACROs in this file should also be modified.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
36 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

4.1.2.3 Changing the application file

• Main application function
The main application function is provided by two functions: USB_DeviceApplicationInit
and APP_task (optional).
The USB_DeviceApplicationInit enables the clock and the USB interrupt and also
initialize the specific USB class. See the usb_device_hid_mouse example for the
sample code.

• USB device call back function
The device callback function handles the USB device-specific requests. See the
usb_device_hid_mouse example for the sample code.

• USB Class-specific call back function
The class callback function handles the USB class-specific requests. See the
usb_device_hid_mouse example for the sample code.

4.2 Developing a new USB host application

4.2.1 Background

In the USB system, the host software controls the bus and talks to the target devices
following the rules defined by the specification. A device is represented by a configuration
that is a collection of one or more interfaces. Each interface comprises one or more
endpoints. Each endpoint is represented as a logical pipe from the application software
perspective.

The host application software registers a callback with the USB host stack, which notifies
the application about the device attach/detach events and determines whether the device
is supported or not. The following figure shows the enumeration and detachment flow.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
37 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 34. Enumeration and detachment flow

The USB host stack is a few lines of code executed before starting communication with
the USB device. The examples on the USB stack are written with class driver APIs. Class
drivers work with the host API as a supplement to the functionality. They make it easy to
achieve the target functionality (see example sources for details) without dealing with the
implementation of standard routines. The following code steps are taken inside a host
application driver for any specific device.

4.2.2 How to develop a new host application

4.2.2.1 Creating a project

Perform the following steps to create a project.

• Create a new application directory under <install_dir>/boards/<board>/usb_
examples/usb_host_<class>_<application> to locate the application source
files and header files. For example, <install_dir>/boards/<board>/usb_
examples/usb_host_hid_mouse.

• Copy the following files from the similar existing applications to the application directory
that is created in step 1.
app.c
usb_host_config.h
The app.c file contains the common initialization code for USB host and the
usb_host_config.h file contains the configuration MACROs for the USB host.

• Copy the bm directory from the similar existing application directory to the new
application directory. Remove the unused project directory from the bm directory.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
38 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Modify the project directory name to the new application project name. For example,
to create toolchain-IAR, board-frdmk64 class-hid related
application , create the new application hid_test based on a similar existing
application hid_mouse.
Copy <install_dir>/boards/frdmk64f/usb_examples/usb_host_hid_
mouse/bm
to <install_dir>/boards/frdmk64f/usb_examples/usb_host_hid_test/
bm

• Modify the project file name to the new application project file name, for example,
from host_hid_mouse_bm.ewp to host_hid_test_bm.ewp . Globally
replace the existing name to the new project name by editing the project files. The
host_hid_test_bm.ewp file includes the new application project setting.

• Create a new source file to implement the main application function, application
task function, and the callback function. The name of this file is similar to the new
application name, such as host_mouse.c and host_keyboard.c.

The following sections describe the steps to modify application files created in the steps
above to match the new application.

4.2.2.2 Main application function flow

In the main application function, follow these steps:

Figure 35. Main application function flow

• Initialize the USB clock.
Call the MCUXpresso SDK API to initialize the KHCI, the EHCI USB clock, or other
controller.

• Initialize the host controller.
This allows the stack to initialize the necessary memory required to run the stack and
register the callback function to the stack.
For example:status = USB_HostInit(CONTROLLER_ID, &g_HostHandle,
USB_HostEvent);

• Enable the USB ISR.
Set the USB interrupt priority and enable the USB interrupt.

• Initialize the host stack task and application task.
For example (Bare metal):
while (1)

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
39 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

{
USB_HostTaskFn(g_HostHandle);
USB_HostMsdTask(&g_MsdCommandInstance);

Note that in this code, the g_MsdCommandInstance variable contains all states and
pointers used by the application to control or operate the device. If implementing the
application task as USB_HostHidTestTask and use g_HidTestInstance to maintain the
application states, modify the code as follows:
while (1)
{
USB_HostTaskFn(g_HostHandle);
 USB_HostHidTestTask(&g_HidTestInstance);
}

4.2.2.3 Event callback function

In the app.c file, there is one USB_HostEvent function. By default, the function is
registered to the host stack when calling the USB_HostInit. In the USB Host stack,
customers do not have to write any enumeration code. When the device is connected to
the host controller, the USB Host stack enumerates the device. The device attach/detach
events are notified by this callback function.

Application needs to implement one or more functions to correspond to one class
process. These application functions are called in the USB_HostEvent. The device’s
configuration handle and interface list are passed to the application through the function
so that the application can determine whether the device is supported by this application.

There are four events in the callback: kUSB_HostEventAttach,
kUSB_HostEventNotSupported, kUSB_HostEventEnumerationDone, and
kUSB_HostEventDetach.

The events occur as follows:

• When one device is attached, host stack notifies kUSB_HostEventAttach.
• The application returns kStatus_USB_Success to notify the host stack that

the device configuration is supported by this class application, or return the
kStatus_USB_NotSupported to notify the host stack that the device configuration is
not supported by this class application.

• The Host stack continues for enumeration if the device is supported by the application
and notifies kUSB_HostEventEnumerationDone when the enumeration is done.

• The Host stack checks the next device’s configuration if the current configuration is not
supported by the application.

• When the Host stack checks all configurations and all are not supported by the
application, it notifies the kUSB_HostEventNotSupported.

• When the device detaches, the Host stack notifies the kUSB_HostEventDetach.

This is the sample code for the HID mouse application. The USB_HostHidMouseEvent
function should be called bythe USB_HostEvent. In this code, the g_HostHidMouse
variable contains all states and pointers used by the application to control or operate the
device:

usb_status_t USB_HostHidMouseEvent
(
usb_device_handle deviceHandle,
 usb_host_configuration_handle configurationHandle,
 uint32_t eventCode
)
{

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
40 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

 /* Process the same and supported device's configuration handle */
 static usb_host_configuration_handle s_ConfigHandle = NULL;
 usb_status_t status = kStatus_USB_Success;
 uint8_t id;
 usb_host_configuration_t *configuration;
 uint8_t interfaceIndex;
 usb_host_interface_t *interface;
 switch (eventCode)
 {
 case kUSB_HostEventAttach:
 /* judge whether is configurationHandle supported */
 configuration = (usb_host_configuration_t
 *)configurationHandle;
 for (interfaceIndex = 0; interfaceIndex < configuration-
>interfaceCount; ++interfaceIndex)
 {
 interface = &configuration-
>interfaceList[interfaceIndex];
 id = interface->interfaceDesc->bInterfaceClass;
 if (id != USB_HOST_HID_CLASS_CODE)
 {
 continue;
 }
 id = interface->interfaceDesc->bInterfaceSubClass;
 if ((id != USB_HOST_HID_SUBCLASS_CODE_NONE) && (id !=
 USB_HOST_HID_SUBCLASS_CODE_BOOT))
 {
 continue;
 }
 id = interface->interfaceDesc->bInterfaceProtocol;
 if (id != USB_HOST_HID_PROTOCOL_MOUSE)
 {
 continue;
 }
 else
 {
 /* the interface is supported by the application
 */
 g_HostHidMouse.deviceHandle = deviceHandle;
 g_HostHidMouse.interfaceHandle = interface;
 s_ConfigHandle = configurationHandle;
 return kStatus_USB_Success;
 }
 }
 status = kStatus_USB_NotSupported;
 break;
 case kUSB_HostEventNotSupported:
 break;
 case kUSB_HostEventEnumerationDone:
 if (s_ConfigHandle == configurationHandle)
 {
 if ((g_HostHidMouse.deviceHandle != NULL) &&
 (g_HostHidMouse.interfaceHandle != NULL))
 {
 /* the device enumeration is done */
 if (g_HostHidMouse.deviceState ==
 kStatus_DEV_Idle)
 {
 g_HostHidMouse.deviceState =
 kStatus_DEV_Attached;
 }
 else
 {
 usb_echo("not idle mouse instance\r\n");
 }
 }
 }

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
41 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

 break;
 case kUSB_HostEventDetach:
 if (s_ConfigHandle == configurationHandle)
 {
 /* the device is detached */
 s_ConfigHandle = NULL;
 if (g_HostHidMouse.deviceState != kStatus_DEV_Idle)
 {
 g_HostHidMouse.deviceState = kStatus_DEV_Detached;
 }
 }
 break;
 default:
 break;
 }
 return status;
}

If implementing the callback as USB_HostHidTestEvent, use g_HidTestInstance,
and support the device that the class code is USB_HOST_HID_TEST_CLASS_CODE,
sub-class code is USB_HOST_HID_TEST_SUBCLASS_CODE, and the protocol is
USB_HOST_HID_TEST_PROTOCOL. The code can be modified as follows:

usb_status_t USB_HostHidMouseEvent
(
usb_device_handle deviceHandle,
 usb_host_configuration_handle configurationHandle,
 uint32_t eventCode
)
{
 /* Process the same and supported device's configuration handle */
 static usb_host_configuration_handle s_ConfigHandle = NULL;
 usb_status_t status = kStatus_USB_Success;
 uint8_t id;
 usb_host_configuration_t *configuration;
 uint8_t interfaceIndex;
 usb_host_interface_t *interface;
 switch (eventCode)
 {
 case kUSB_HostEventAttach:
 /* judge whether is configurationHandle supported */
 configuration = (usb_host_configuration_t
 *)configurationHandle;
 for (interfaceIndex = 0; interfaceIndex < configuration-
>interfaceCount; ++interfaceIndex)
 {
 interface = &configuration-
>interfaceList[interfaceIndex];
 id = interface->interfaceDesc->bInterfaceClass;
 if (id != USB_HOST_HID_TEST_CLASS_CODE)
 {
 continue;
 }
 id = interface->interfaceDesc->bInterfaceSubClass;
 if (id != USB_HOST_HID_TEST_SUBCLASS_CODE)
 {
 continue;
 }
 id = interface->interfaceDesc->bInterfaceProtocol;
 if (id != USB_HOST_HID_TEST_PROTOCOL)
 {
 continue;
 }
 else
 {

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
42 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

 /* the interface is supported by the application
 */
 g_HidTestInstance.deviceHandle = deviceHandle;
 g_HidTestInstance.interfaceHandle = interface;
 s_ConfigHandle = configurationHandle;
 return kStatus_USB_Success;
 }
 }
 status = kStatus_USB_NotSupported;
 break;
 case kUSB_HostEventNotSupported:
 break;
 case kUSB_HostEventEnumerationDone:
 if (s_ConfigHandle == configurationHandle)
 {
 if ((g_HidTestInstance.deviceHandle != NULL) &&
 (g_HidTestInstance.interfaceHandle != NULL))
 {
 /* the device enumeration is done */
 if (g_HidTestInstance.deviceState ==
 kStatus_DEV_Idle)
 {
 g_HidTestInstance.deviceState =
 kStatus_DEV_Attached;
 }
 else
 {
 usb_echo("not idle mouse instance\r\n");
 }
 }
 }
 break;
 case kUSB_HostEventDetach:
 if (s_ConfigHandle == configurationHandle)
 {
 /* the device is detached */
 s_ConfigHandle = NULL;
 if (g_HidTestInstance.deviceState != kStatus_DEV_Idle)
 {
 g_HidTestInstance.deviceState =
 kStatus_DEV_Detached;
 }
 }
 break;
 default:
 break;
 }
 return status;
}

Note that the kStatus_DEV_Attached, kStatus_DEV_Detached MACROs are
defined in the example.

4.2.2.4 Class initialization

When the supported device is attached, the device’s class needs to be initialized.

For example, the HID mouse initialization flow is as follows:

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
43 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Figure 36. HID mouse initialization flow

• Call class initialization function to initialize the class instance.
• Call class set interface function to set the class interface
• When the set interface callback returns successfully, the application can run.

4.2.2.5 Sending/Receiving data to/from the device

The transfer flow is as follows:

1. Call the USB_hostClassxxx API to begin the transfer.
2. The transfer result is notified by the callback function that is passed as a parameter.
3. The HID mouse host uses the following code to receive data from the

device:USB_HostHidRecv(classHandle, mouseBuffer, bufferLength,
callbackFunction, callbackParameter);

5 USB compliance tests

For the device, this is enabled on "dev_hid_mouse_bm" as an example.

enable USB_DEVICE_CONFIG_COMPLIANCE_TEST (0U)

The macro is defined in usb_device_config.h. Use the TWR-K65F180M Tower
System module as an example. The file path is

<install_dir>/boards/twrk65f180m/usb_examples/usb_device_hid_mouse/bm/usb_
device_config.h.

Both CV test and USB test mode are enabled.

For the host, this is enabled on "host_mad_fatfs_bm" as an example.

enable USB_HOST_CONFIG_COMPLIANCE_TEST (0U)

The macro is defined in the usb_host_config.h file.

For example, for the TWR-K65F180M Tower System module, the file path is

<install_dir>/boards/twrk65f180m/usb_examples/usb_host_msd_fatfs/bm/usb_host_
config.h

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
44 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

6 USB host FatFs throughput

The following test is based on usb_host_msd_fatfs, bm, IAR, release target.

Test device - Sandisk extreme USB3.0 64G SDCZ80 - 64G

Controller Write speed Read speed

RT1050 EHCI ~32163 KB/s ~38509 KB/s

K28FA KHCI ~913 KB/s ~932 KB/s

LPCXpresso54628 IP3516 ~22034 KB/s ~22489 KB/s

LPCXpresso54628 OHCI ~860 KB/s ~970 KB/s

Table 3. USB host FatFs throughput

7 USB device ramdisk throughput

Controller Write speed Read speed

RT1050 EHCI (System clock
600 MHz)

~29051 KB/s ~32338 KB/s

K28FA KHCI (System clock
150 MHz)

~1007 KB/s ~1106 KB/s

LPCXpresso54628 IP3511FS
(System clock 220 MHz)

~972 KB/s ~1140 KB/s

LPCXpresso54628 IP3511HS
(System clock 220 MHz)

~17438 KB/s ~31496 KB/s

Table 4. USB device ramdisk throughput

8 Precautions

For USB host, if using USB HUB, the external power supply of the USB HUB must be
provided before it is used.

The development board power is not enough to supply multi-level USB HUBs and
connected devices.

Therefore, the external USB HUB connected to the development board should have its
own power supply.

9 Revision history

This table summarizes revisions to this document since the release of the previous
version.

Revision number Date Substantive changes

1 01/2016 KSDK 2.0.0 release

2 08/2016 Added LPC content for release

3 09/2016 Updated for KSDK 2.0.0 release 5

Table 5. Revision history

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
45 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Revision number Date Substantive changes

4 11/2016 Updated IAR version and USB code structure version,
Section 2.4.1 and Section 2.4.2

5 03/2017 Updated for MCUXpresso SDK

6 04/2017 Added note in Section 2.3

7 11/2017 MCUXpresso SDK 2.3.0 release

8 05/2018 • Updated Section 4.1.2.1., "Changing the usb_device_
descriptor.c file"

• Removed Section 2.3.4, "Step-by-step guide for Kinetis
Design Studio (KDS) IDE", Updated for MCUXpresso
SDK 2.4.0 release

9 12/2018 • Updated Chapter 5, "USB compliance tests"
• Add a bullet for 'Chapter 6 for MCUXpresso SDK 2.5.0'

10 06/2019 • Updated Section 4.2, "Developing a new USB host
application" for MCUXpresso SDK 2.6.0

• Added Chapter 7, "USB device ramdisk throughput" for
MCUXpresso SDK 2.6.0

11 06/2020 Updated for MCUXpresso SDK v2.8.0

12 11/2020 Updated for MCUXpresso SDK v2.9.0

13 11 July 2022 Editorial and layout updates.

Table 5. Revision history...continued

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
46 / 48

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

10 Legal information

10.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

10.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

10.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 13 — 11 July 2022
47 / 48

mailto:PSIRT@nxp.com

NXP Semiconductors MCUXSDKUSBSUG
MCUXpresso SDK USB Stack User’s Guide

Contents
1 Overview .. 2
2 Build the USB examples in MCUXpresso

SDK ...2
2.1 Requirements for building USB examples 2
2.1.1 Hardware ... 2
2.1.2 Software ...2
2.2 USB code structure ... 2
2.3 Compiling or running the USB stack and

examples ..4
2.3.1 Step-by-step guide for MCUXpresso IDE 4
2.3.2 Step-by-step guide for IAR 8
2.3.3 Step-by-step guide for Keil µVision59
2.3.4 Step-by-step guide for ARM GCC 10
2.3.4.1 Setup tool chains ...10
2.3.4.2 Install GCC Arm embedded tool chain 10
2.3.4.3 Install MinGW .. 10
2.3.4.4 Add new system environment variable

ARMGCC_DIR ...11
2.3.4.5 Install CMake ...12
2.3.4.6 Build the USB demo ..13
2.3.4.7 Run a demo application13
2.4 USB stack configuration 15
2.4.1 Device configuration .. 15
2.4.2 Host configuration ..15
2.4.3 USB cache-related MACROs definitions 16
3 Porting to a new platform 18
3.1 System-on-Chip (SoC) files 18
3.2 Board files ..19
3.3 Porting examples ...21
3.3.1 Copy a new platform example21
3.3.2 Porting the example .. 21
3.3.3 Modify the example project23
3.3.4 USB host CDC example26
3.3.5 USB device MSC SD card example 27
3.3.6 USB device audio speaker example27
3.3.7 USB device CCID Smart card example 27
4 Developing a new USB application 27
4.1 Developing a new USB device application28
4.1.1 Application interfaces28
4.1.2 How to develop a new device application 28
4.1.2.1 Changing the usb_device_descriptor.c file29
4.1.2.2 Changing the usb_device_descriptor.h file 36
4.1.2.3 Changing the application file 37
4.2 Developing a new USB host application 37
4.2.1 Background ..37
4.2.2 How to develop a new host application 38
4.2.2.1 Creating a project .. 38
4.2.2.2 Main application function flow39
4.2.2.3 Event callback function40
4.2.2.4 Class initialization .. 43
4.2.2.5 Sending/Receiving data to/from the device44
5 USB compliance tests 44
6 USB host FatFs throughput 45

7 USB device ramdisk throughput 45
8 Precautions ..45
9 Revision history .. 45
10 Legal information ..47

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2022 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 11 July 2022
Document identifier: MCUXSDKUSBSUG

	1 Overview
	2 Build the USB examples in MCUXpresso SDK
	2.1 Requirements for building USB examples
	2.1.1 Hardware
	2.1.2 Software

	2.2 USB code structure
	2.3 Compiling or running the USB stack and examples
	2.3.1 Step-by-step guide for MCUXpresso IDE
	2.3.2 Step-by-step guide for IAR
	2.3.3 Step-by-step guide for Keil µVision5
	2.3.4 Step-by-step guide for ARM GCC
	2.3.4.1 Setup tool chains
	2.3.4.2 Install GCC Arm embedded tool chain
	2.3.4.3 Install MinGW
	2.3.4.4 Add new system environment variable ARMGCC_DIR
	2.3.4.5 Install CMake
	2.3.4.6 Build the USB demo
	2.3.4.7 Run a demo application

	2.4 USB stack configuration
	2.4.1 Device configuration
	2.4.2 Host configuration
	2.4.3 USB cache-related MACROs definitions

	3 Porting to a new platform
	3.1 System-on-Chip (SoC) files
	3.2 Board files
	3.3 Porting examples
	3.3.1 Copy a new platform example
	3.3.2 Porting the example
	3.3.3 Modify the example project
	3.3.4 USB host CDC example
	3.3.5 USB device MSC SD card example
	3.3.6 USB device audio speaker example
	3.3.7 USB device CCID Smart card example

	4 Developing a new USB application
	4.1 Developing a new USB device application
	4.1.1 Application interfaces
	4.1.2 How to develop a new device application
	4.1.2.1 Changing the usb_device_descriptor.c file
	4.1.2.2 Changing the usb_device_descriptor.h file
	4.1.2.3 Changing the application file

	4.2 Developing a new USB host application
	4.2.1 Background
	4.2.2 How to develop a new host application
	4.2.2.1 Creating a project
	4.2.2.2 Main application function flow
	4.2.2.3 Event callback function
	4.2.2.4 Class initialization
	4.2.2.5 Sending/Receiving data to/from the device

	5 USB compliance tests
	6 USB host FatFs throughput
	7 USB device ramdisk throughput
	8 Precautions
	9 Revision history
	10 Legal information
	Contents

